
CPS 110 Midterm

March 9, 1999

There are four questions equally weighted at 50 points each. Answer all questions. Please sign
your name and stapling all your answers together. Allocate your time carefully. Your answers
will be graded on content, not style. For code answers, any kind of pseudocode is fine as long
as its meaning is clear. For written answers to “essay” questions, please do not waste any
words. You have 75 minutes.

1. The Ring Cycle. This problem asks you to generalize the ping-pong (Tweedle*) example dis-
cussed in class. You are to write a procedure TakeTurns(int) that will be called by N threads
(N is a constant). The argument to TakeTurns is an integer between 0 and N-1 that uniquely
identifies the calling thread. TakeTurns executes an endless loop, printing out its argument
(the calling thread ID) on each iteration. The intended behavior is that the thread IDs [0..N-
1] will be printed in order in an endlessly repeating cycle.

(a) Implement TakeTurns using semaphore(s).

(b) Implement TakeTurns using a mutex and a single condition variable. Your solution
should work properly whether or not condition variables are fair.

(c) Briefly discuss the expected performance of your solution for part (b). How many con-
text switches do you expect will occur for each turn? On a uniprocessor? On a shared-mem-
ory multiprocessor?

(d) Implement a more efficient TakeTurns solution using condition variables, and briefly
explain why it is efficient.

2. Impatient Wait. The Java Object.Wait primitive is similar to Nachos Condition::Wait, except
that Object.Wait may be optionally bounded by a timeout. The timed variant Object.Wait(int
timeout) has the following semantics: the calling thread sleeps until either (a) it is awakened
by another thread’s signal (Object.Notify) using ordinary Mesa condition variable semantics,
or (b) the period of time specified by timeout has elapsed. Show how to implement condi-
tion variables with a Java-style bounded wait in a Nachos-like setting. You may assume the
existence of familiar Nachos internal primitives and/or an Alarm facility as implemented in
Lab #3.

3. Mode and Context. The following questions concern the handling of processes in a pro-
tected kernel-based operating system such as Nachos. Assume that the kernel creates and
initializes each process to execute a statically linked program from an executable file whose
name is passed as an argument to the process create primitive (as the Nachos Exec system
call). Note: your answers should ignore the issues of page table structure, the virtual address
translation mechanism, and argument handling.

(a) Explain how the kernel initializes physical memory for use by the program. How does
the kernel determine the initial values for the memory allocated to the new process?

(b) Explain how the kernel initializes the program counter register (PC) and stack pointer

register (SP) before switching the CPU to user mode to start the fresh process for the first
time. How are the initial values of these registers determined? What about the other regis-
ters?

(c) Once the CPU is executing in user mode in the context of the fresh process, what could
cause it to switch back into kernel mode? Give three distinct examples and outline how each
affects the PC and SP registers on re-entry to the kernel. What about the other registers?

(d) Once the CPU is in kernel mode as a result of the examples in part (c), what could cause
it to switch back into user mode? List as many distinct scenarios as you can think of (I can
think of six or seven good ones), and outline for each case how the kernel determines values
for the PC and SP registers before the switch to user mode. What about the other registers?

(e) Briefly enumerate the kernel data structures involved in representing the new process
and the resources allocated to it.

4. Event. This problem asks you to implement an Event class similar to the fundamental coor-
dination primitives used throughout Windows and NT. Initially, an Event object is in an
unsignaled state. Event::Wait() blocks the calling thread if the event object is in the unsig-
naled state. Event::Signal() transitions the event to the signaled state, waking up all threads
waiting on the event. If Wait is called on an event in the signaled state, it returns without
blocking the caller. Event::Reset() resets an event object to the unsignaled state. It is illegal
to call Signal twice without an intervening Reset, but you need not enforce this.

(a) Implement Event using a single semaphore with no additional synchronization.

(b) Implement Event using a mutex and condition variable.

(c) Show how to use Event to implement the synchronization for a Join primitive for pro-
cesses or threads. Your solution should show how Event could be used by the code for
thread/process Exit as well as by Join. For this problem you need not be concerned with
deleting the objects involved, or with passing a status result from the Join.

