

Consider the problem of searching an elemet x in an array

‘arr[]' of size n. The problem can be solved in O(Logn) time

If.

1) Array is sorted

2) 2) Array is sorted and rotated by k. k is given to you and k
<=n

3) 3) Array Is sorted and rotated by k. kis NOT given to you
and k<=n

4) 4) Array is not sorted

1 Only

1 & 2 only

1, 2 and 3 only
1,2,3and 4

What does the following function do?

int fun(int x, int y)

{
if (y ==0) return O;
return (x + fun(x, y-1));

}

A X+y
BXx + xxy
C x*y

D xY

What does the following function do?

int fun(int x, int y)

{
if (y ==0) returnO;
return (x + fun(x, y-1));

}

int fun2(int a, int b)
{
if (b == 0) return 1,
return fun(a, fun2(a, b-1));

}

* You have to sort 1 GB of data with only 100 MB of available main
memory. Which sorting technique will be most appropriate?

 What is the worst case time complexity of insertion sort where
position of the data to be inserted is calculated using binary search?

Consider a sorted array of n numbers. What would be the time
complexity of the best known algorithm to find a pair 'a' and 'b’
such that |a-b| = k , k being a positive integer.

O(n)

O(n log n)
O(n * 2)
O(log n)

