ElNA421 - lNpoypOUUATIONOG ZUCTNHATWY

AlaAecn 21: YTTOAOYIOTIKEC 2TOIBEC
MeyaAwv AedoueEvwy

Anunteng ZeivaAittoup

211

Lecture Outline

Introduction to "Big-Data" Analytics
— Example Scenarios and Architectures.
Map-Reduce Programming Model

— Other Map Reduce Data Processing Stacks
— Map-Reduce Counting Problem

Map-Reduce Architecture

— Hadoop JobTracker, Tasktrackers and data-nodes
— Failure Management

Map-Reduce Optimizations

— Combiners, Compression, In-Memory Shuffling, Speculative
Execution

Programming Map-Reduce

— With Languages, PIG and in-the-cloud
21-2

Big-data Analytics

@ Very large data collections (TB to PB) stored on distributed filesystems:
» Query logs
» Search engine indexes
» Sensor data

@ Need efficient ways for analyzing, reformatting, processing them

@ [n particular, we want:

» Parallelization of computation (benefiting of the processing power of all
nodes in a cluster)
» Resilience to failure

21-3

Big-data Analytics
(Example)

« We have a large file of words, one word to a line.

— e.g., analyze web server logs for popular IPs
154.16.20.4

14.16.20.4
154.16.20.4
11.23.54.11

 Count the number of times each distinct word
appears in the file

— sort datafile | unig -c¢ | sort -nk 2

154.16.20.4 2 Scenario captures essence of MapReduce
14.16.20.4 1

11.23.54.11 1 Great thing is it is naturally parallelizable!

21-4

Big-data Analytics

Centralized computing with distributed data storage

Run the program at client node, get data from the distributed system.

(Y
Client node e i mETOW
program 1 -
‘) disk
T (\
e memory
~ memory
data flow
3 (input) ———> disk
g data flow —
\) (output) i

Downsides: important data flows, no use of the cluster computing resources.
21-5

Distributed Process
Management in UNIX

cat hostnames. txt

#!/bin/bash

COMMAND="ps -ef”

echo "Running $COMMAND"

for i in “cat hostnames. txt’

do
echo -n " $i"
assuming public/private key has been established
ssh $i "$COMMAND > /tmp/file " &
echo "...Done"
done
echo "Waiting"
sleep 1
echo "Collecting Data"
for i in “cat hostnames. txt’
do
echo -n " $i”
ssh $i "cat /tmp/file " &
#echo "...Done"
done | awk -F" " '{print $1}' | sort | unigq

b103wsl.

b1l03ws2.1
b103ws3.1
b103ws4. 1
b103ws5.1
b103ws6. 1
b103ws7.1
b103ws8. 1
b103ws9.1
b103ws10. 1
b103wsl1l.
b103wsl2. 1
b103ws13.1
b103wsl4. 1
b103ws1l5. 1

bl03wsl6.in.

Drawbacks ®: No I/O Optimizations,
No Monitoring of Failures => No Fault Tolerance!

in.
in.
in.
in.
in
in.
in
in.

in.

in.

in.

in.

in.

in.

in.

CSs

Cs.

Cs.

Cs.

.Cs.

Cs.

.Cs.

Cs.
Cs.
Cs
Cs
Cs
Cs
Cs
Cs

Cs

.ucy.

ucy.
ucy.
ucy.
ucy.
ucy.
ucy.
ucy.

ucy.

.ucy.
.ucy.
.ucy.
.ucy.
.ucy.
.ucy.

.ucy.

ac.

ac.

ac.

ac.

ac

ac.

ac

ac.

ac.

ac.

ac.

ac.

ac.

ac.

ac.

ac.

cy
cy
cy
cy

.cy

cy

.cy

cy

cy

cy
cy
cy
cy
cy
cy
cy

21-6

Map-Reduce Programming Model

Pushing the program near the data

Cllent node) .-~~~ process
program()
\coordmator(..
result dlSk

program()

¢ resu it <
: | process%

pro cessa
‘ disk \

program()

-
disk

@ MapReduce: A programming model (inspired by standard functional
programming operators) to facilitate the development and execution of

distributed tasks.

@ Published by Google Labs in 2004 at OSDI [DG04]. Widely used since
then, open-source implementation in Hadoop.

21-7

Map-Reduce Programming Model

MapReduce in Brief

@ The programmer defines the program logic as two functions:

Map transforms the input into key-value pairs to process
Reduce aggregates the list of values for each key

@ The MapReduce environment takes in charge distribution aspects

@ A complex program can be decomposed as a succession of Map and
Reduce tasks

@ Higher-level languages (Pig, Hive, etc.) help with writing distributed
applications

21-8

Map-Reduce Programming Model

streaming - map

MEMORY \ / reduce\—‘> streaming
C-PLICATED DISK @ @ @

HDFS (Hadoop File System): 64MB datablock x (c) replication

21-9

Example: term count in MapReduce (input)

Map-Reduce Problem

term count

Count the distinct words in all documents iaguar 5

mammal 1

cat *.txt | sort | uniq -c family 3
available 1
URL Document
U+ the jaguar is a new world mammal of the felidae family.
U for jaguar, atari was keen to use a 68k family device.
U3 mac 0s X jaguar is available at a price of us $199 for apple’s
new “family pack”.
Uy one such ruling family to incorporate the jaguar into their name
IS jaguar paw.
us itis abig cat. 1 TBon 1 PC =2 hours!!!

1TB on 100 PCs = 1min!!!

21-11

Map-Reduce Example

Example: term count in MapReduce

list(K’, V')
!
term count Example uses 1 mapper /1 reduce only!
(AN H / . 1! 1!
aguar 1 (K’ list(V")) list(K”, V")
mammal 1 term count - term count
famil 1 . :
/ ':mulgr 1 S jaguar 1,1,1,2 |e| jaguar 5
—Jagt hu mammal 1 d| mammal 1 final
available 1 i : :
, family 1,1,1 u family 3
jaguar 1 e . _
: available 1 C| available 1
family 1 e
family 1
jaguar 2

<112

Map-Reduce Programming Model

@ User-defined: map: (K, V) — list(K’, V')

function map (uri, document)
foreach distinct term in document
output (term, count (term, document))

(dumping)

@ Fixed behavior: shuffle : list(K’, V') — list(K’, list(V')) regroups all
intermediate pairs on the key (hashing / sorting)

@ User-defined: reduce : (K, list(V')) — list(K”, V")

function reduce (term, counts)

output (term, sum(counts)) (grouping)

2113

(64MB containing documents)

—_—
........ D

Map-Reduce Architecture
in Hadoop)

data flow
messages

HFDS blocks

Data source

Group 0

read()

Group 1

Group 2

Group

HDFS

Datanode Reading

(e.g.,

assign &

Mapper 1 —>
Mapper 2

MapReduce()
call

int. group ;
location ,-':

.
.
.
.......

dump()

Local
Shuffling
(of terms)

: MapReduce()
: return

Master -

. result
.' .. location
assign ",
lntermedlate : Output
groups dump() repository
& Reducer | —— [result |
Hash
;\ Reducer 2 |— » |result 2
read()/
N) =
Remote HDFS
Write Writing

read()

Standard
Output (e.g.,
socket)

2114

Map-Reduce Architecture
(e.g., in Hadoop)

—> data flow [Client

~~~~~~~~ > messages MapReduce() MapReduce()

read()
result

.. location

A MapReduce cluster

Y Output
dump() repository

Em
e -result2 -

Reducerr |—» _

Nodes inside a MapReduce cluster are decomposed as follows:
@ A jobtracker acts as a master node; MapReduce jobs are submitted to it
@ Several taskirackers run the computation itself, i.e., map and reduce tasks
@ A given taskiracker may run several tasks in parallel

@ Tasktrackers usually also act as data nodes of a distributed filesystem (e.g.,
GFS, HDFS)

+ a client node where the application is launched.



Map-Reduce Architecture
(Processing Remarks)

Processing a MapReduce job

A MapReduce job takes care of the distribution, synchronization and failure
handling. Specifically:

@ the input is split into M groups; each group is assigned to a mapper
(assignment is based on the data locality principle)

@ each mapper processes a group and stores the intermediate pairs locally
@ grouped instances are assigned to reducers thanks to a hash function

@ (shuffle) intermediate pairs are sorted on their key by the reducer

@ one obtains grouped instances, submitted to the reduce function

Remark: the data locality does no longer hold for the reduce phase, since it
reads from the mappers.

21-16



Map-Reduce Architecture
(Failure Manaoomant)

Failure management

In case of failure, because the tasks are distributed over hundreds or thousands
of machines, the chances that a problems occurs somewhere are much larger;

starting the job from the beginning is not a valid option.

The Master periodically checks the availability and reachability of the
tasktrackers (heartbeats) and whether map or reduce jobs make any progress

@ if a reducer fails, its task is reassigned to another tasktracker; this usually
require restarting mapper tasks as well (to produce intermediate groups)

@ if a mapper fails, its task is reassigned to another tasktracker
© if the jobtracker fails, the whole job should be re-initiated

"ZooKeeper: Wait-free coordination for Internet-scale systems", Hunt et al.,
USENIX 2010, http://static.usenix.org/event/usenix10/tech/full_papers/Hunt.pdf

YARN brings real failure management to the Hadoop 2 ecosystem 21-18



Map-Reduce Optlmlzatlons
(Comblners)

Combiners

@ A mapper task can produce a large number of palrs with the same key
@ They need to be sent over the network to the reducer: costly
@ It is often possible to combine these pairs into a single key-value pair

Example
(jaguar,1), (jaguar, 1), (jaguar, 1), (jaguar, 2)— (jaguar, 5) J

@ combiner : list(V') — V’ function executed (possibly several times) to
combine the values for a given key, on a mapper node
@ No guarantee that the combiner is called

@ Easy case: the combiner is the same as the reduce function. Possible
when the aggregate function &« computed by reduce is distributive:

o(ki,o(ko, k3)) = a(ki, k2, k3) Distributive: COUNT, MIN, MAX, SUM

Won’t work with Holistic functions: MEDIAN, RANK (all are necessary)
21-19



Map-Reduce Optimizations

(Compression)

I —> data flow @
""""" > messages MapReduce() X MapReduce()

call Y i return

aster

read()

@ Data transfers over the network:

» From datanodes to mapper nodes (usually reduced using data locality)

» From mappers to reducers
» From reducers to datanodes to store the final output

@ Each of these can benefit from data compression

@ T[radeoff between volume of data transfer and (de)compression time

@ Usually, compressing map outputs using a fast compressor increases
efficiency

21-20



Map-Reduce Optimizations
(Shuffling in Memory)

Opt|m|2|ng the shuff/e operatlon o x:v"jjjfé

"""""""""""

@ Sorting of pairs on each reducer, to compute the groups: costly operation
@ Sorting much more efficient in memory than on disk

@ Increasing the amount of memory available for shuffle operations can
greatly increase the performance

@ ... at the downside of less memory available for map and reduce tasks
(but usually not much needed)

21-21



Map-Reduce Optimizations
(Speculative Execution)
Speculative execution

read()

@ The MapReduce jobtracker tries detecting tasks that take longer than usual
(e.g., because of hardware problems)

@ When detected, such a task is speculatively executed on another
tasktracker, without killing the existing task

@ Eventually, when one of the attempts succeeds, the other one is killed

21-23



MapReduce in Hadoop
(MR => HADOOP => HBASE)

 Map-Reduce: a programming model for processing
large data sets. Google

Invented by Google! "MapReduce: Simplified Data Processing
on Large Clusters, Jeffrey Dean and Sanjay Ghemawat,
OSDI'04: Sixth Symposium on Operating System Design and
Implementation,San Francisco, CA, December, 2004."

Can be implemented in any language (recall javascript Map-
Reduce we used in the context of CouchDB).

 Hadoop: Apache's open-source software framework
that supports data-intensive distributed applications

Derived from Google's MapReduce + Google File System
(GFS) papers. (Input by Yahoo!, Facebook, etc.)

Enables applications to work with thousands of computation-

independent computers and petabytes of data. L@hadﬂﬂp
21-24

Download: http://hadoop.apache.org/



http://hadoop.apache.org/

Hadoop PMC

The Hadoop Project Management Committee contains (in alphabetical order):

acmurthy
amareshwari
atm
bobby
cdouglas
cutting
ddas
dhruba
eli

enis
gkesavan
hairong
jghoman
jitendra
mahadev
mattf
nigel
omalley
phunt
rangadi
sharad
shv
sradia
sseth
stack
suresh
szetszwo
tgraves
todd
tomwhite
tucu
vinodkv
yhemanth
zshao

MapReduce in Hadoop

Arun C Murthy

Amareshwari Sriramadasu

Aaron T. Myers
Robert(Bobby) Evans
Chris Douglas

Doug Cutting

Devaraj Das
Dhruba Borthakur

Eli Collins

Enis Soztutar
Giridharan Kesavan
Hairong Kuang
Jakob Homan
Jitendra Nath Pandey
Mahadev Konar

Matt Foley

Nigel Daley

Owen O'Malley
Patrick Hunt

Raghu Angadi
Sharad Agarwal
Konstantin Shvachko
Sanjay Radia
Siddharth Seth
Michael Stack
Suresh Srinivas

Tsz Wo (Nicholas) Sze

Thomas Graves
Todd Lipcon

Tom White
Alejandro Abdelnur

Vinod Kumar Vavilapalli

Hemanth Yamijala
Zheng Shao

https://hadoop.apache.org/who.html

Hortonworks
InMobi
Cloudera
Yahoo!
Microsoft
Cloudera
Hortonworks
Facebook
Cloudera
Hortonworks
Hortonworks
Facebook
LinkedIn
Hortonworks
Hortonworks
Hortonworks
Jive
Hortonworks
Cloudera
Twitter
InMobi

Hortonworks
Hortonworks
StumbleUpon
Hortonworks
Hortonworks
Yahoo!
Cloudera
Cloudera
Cloudera
Hortonworks

Facebook

(Who is driving Hadoop?)

ZooKeeper

HDFS

HBase



 Hadoop Project Modules: m hadﬂap

MapReduce in Hadoop
(MR => HADOOP => HBASE)

Hadoop Common: The common utilities that support the other Hadoop modules.

Hadoop Distributed File System (HDFS™): A distributed file system that provides high-
throughput access to application data.

Hadoop YARN (Yet Another Resource Negotiator): A framework for job scheduling and
cluster resource management.

Hadoop MapReduce (MapReduce v2.0): A YARN-based system for parallel processing of
large data sets.

« Other Hadoop-related projects at Apache include:

Ambari™: A web-based tool for provisioning, managing, and monitoring Apache Hadoop clusters
Avro™: A data serialization system.

Cassandra™: A scalable multi-master database with no single points of failure.

Chukwa™: A data collection system for managing large distributed systems.

HBase™: A scalable, distributed database that supports structured data storage for large tables.
Hive™: A data warehouse infrastructure that provides data summarization and ad hoc querying.
Mahout™: A Scalable machine learning and data mining library.

Pig™: A high-level data-flow language and execution framework for parallel computation.
Spark™: A fast and general compute engine for Hadoop data.

Tez™: A generalized data-flow programming framework, built on Hadoop YARN,

ZooKeeper™: A high-performance coordination service for distributed applications.

21-26


http://incubator.apache.org/ambari/
http://avro.apache.org/
http://cassandra.apache.org/
http://incubator.apache.org/chukwa/
http://hbase.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://pig.apache.org/
http://spark.incubator.apache.org/
http://tez.incubator.apache.org/
http://zookeeper.apache.org/

Programming with Hadoop
(with Languages)

Hadoop programming interfaces

@ Different APIs to write Hadoop programs:

< » Arich Java API (main way to write Hadoop programs]—>
» A Streaming APTthat can be used to write map and reduce functions in any

programming language (using standard inputs and outputs)
» A C++ API (Hadoop Pipes)

< * With a higher-language level (e.g., Pig, Hive) >
@ Advanced features only available in the Java API

@ Two different Java APls depending on the Hadoop version; presenting the
“old” one

21-27



Programming with Hadoop
(in the Cloud!)

Hadoop in the cloud
. cloudera

amazon gger Questio

web services

@ Possibly to set up one’s own Hadoop cluster

@ But often easier to use clusters in the cloud that support MapReduce:

» Amazon EC2
» Cloudera
» etc.

@ Not always easy to know the cluster’s configuration (in terms of racks, etc.)
when on the cloud, which hurts data locality in MapReduce

Amazon Elastic MapReduce (Amazon EMR)

Amazon Elastic MapReduce (Amazon EMR) is a web service that enables
businesses, researchers, data analysts, and developers to easily and cost-
effectively process vast amounts of data. It utilizes a hosted Hadoop framework
running on the web-scale infrastructure of Amazon Elastic Compute Cloud
(Amazon EC2) and Amazon Simple Storage Service (Amazon S3).

21-28



Hadoop Cloud Issues & Costs

* The public cloud storage & deep storage might
not be an option if legislative barriers exists
(e.g., privacy & security concerns)

« A Hadoop Cluster using between 125-250
nodes is projected to cost ~1M USD per year to

be operational!

 The amount of storage doubles every year but
the storage media only decline at a rate of less
than 1/5 per year.

— We need ways to decay large volumes of data

21-29



Modern Data Processing Stacks

Herodotou, 2013

Hive, Pig, DryadLINQ,
A hark
JAQL QL Meteor Sha SCOPE Ol
Pregel,
Hadoop Hyracks Nephele Spark Dryad Mophuchics
RDD S igtable
HDFS HDFS HDFS HDFS Storage GES
System
Hadoop ASTERIX Stratospher BDAS Microsoft Google
Stack Stack Stack Stack Stack Stack
TU Berlin —
Apache UCI & UCR —>Apache ucC i%r:;lleey >

21-30



What is Spark?

Fast, expressive cluster computing system compatible
with Apache Hadoop

— XVorks w)ith any Hadoop-supported storage system (HDFS, S3,
vro, ...

Improves efficiency through: I

— In-memory computing primitives Up to 100 x faster
— General computation graphs

Improves usability through:

— Rich APIs in Java, Scala, Python === Often 2-10 % less code
— Interactive shell

120 110

w
-

® Hadoop
¥ Spark

(#%)
o

Running time (s)
@D
-

0.9

o

21-31



