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Introduction
■ New OLTP applications support larger number of concurrent users/systems 

because of the scale to which ingest information. 
■ Performance is affected by how fast the system reads/writes data. 
■ DBMSs always dealt with the tradeoffs between volatile and nonvolatile 

storage devices because recovery logs need to be written in non-volatile 
devices

■ HDDs and SSDs are such devices but are slow and support bulk data 
transfers as blocks.
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Introduction
■ DRAM would be great for such workloads but it is a volatile memory and also 

consumes a lot of energy

“ DRAM - Dynamic Random Access Memory is a type of memory that is typically 
used for data or program code that a computer processor needs to function. 
DRAM is a common type of random access memory used in personal computers, 
workstations and servers. “  - Wikipedia

■ Flash-Based SSDs have better storage capabilities and less energy 
consumption but slower than DRAM

■ Flash-Based SSDs also have Block-Based access methods, writing single 
byte the DBMS must write the change as a block - 4KB

■ Problematic for OLTPs since they do a lot of small changes
4
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Introduction
■ NVM - Non-Volatile Memory will fundamentally change the dichotomy 

between memory and durable/persistent storage in the DBMSs

“ Non-Volatile Memory is a type of computer memory that can retrieve stored 
information even after having been turned off and back on - power cycled. The 
opposite of non-volatile memory is volatile memory which needs constant power in 
order to prevent data from being erased. “  - Wikipedia

■ NVM is a blend of flash-based SSD and DRAM and provides low latency 
persistent reads and writes

■ Usage of NVM-only hierarchy in OLTP DBMS will be evaluated in this paper 
presentation 
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About Data Structures
■ SSTable:

○ Sorted string table, key-value storage sorted by keys
○ On-disk data structure and is always immutable
○ Immutable - appropriate only for storing static data. Bloom filters are used to reduce reads
○ Internally contains a sequence of blocks, each block is 64 KB in size

■ Bloom Filter [1]:
○ Space-efficient probabilistic data structure
○ A query returns either "possibly in set" or "definitely not in set"
○ Sufficient core memory, an error-free hash used to eliminate all unnecessary disk accesses.
○ Fewer than 10 bits per element are required for a 1% false positive probability, independent of 

the size or number of elements in the set
■ MemTable:

○ An in-memory SSTable with the contents loaded in RAM

■ LSM Tree:
○ A data structure with performance characteristics that make it attractive for providing indexed 

access to files with high insert volume, such as transactional log data
6
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Disk-oriented e.g., IBM’s System R [2]
■ Manage blocks of tuples on disk using 

           in-memory cache
Memory-oriented e.g., IBM’s IMS/VS Fast Path [3]

■ Updates on in-memory data and relies
 on the disk to ensure durability

Previous studies have shown that the overhead of managing this data movement for OLTP workloads is considerable

NVM technologies, remove tuple transformation and propagation costs through byte-addressable loads and stores with 
low latency

■ Unlike DRAM, all writes to the NVM are potentially durable and therefore a DBMS can access the tuples directly in the 
NVM after a restart or crash without the need to reload the database

Previous work showed that the two architectures achieve almost the same performance when using NVM because of the 
overhead of logging [4]

       Authors seek to understand the characteristics of different storage and recovery methods

Motivation
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NVM Hardware Emulator
NVM storage devices are prohibitively expensive and only support small capacities

■ Use of a NVM hardware emulator 
■ Emulator supports tunable read latencies and read/write bandwidths

Allocator Interface
■ POSIX malloc interface
■ Use of hardware write barrier primitive (SFENCE) to guarantee the durability of writes to NVM
■ NEGATIVE: No naming mechanism that is valid after a system restart 

Filesystem Interface
■ POSIX filesystem interface (read/write)
■ Emulator exposes a NVM-backed volume to the OS through an optimized for non-volatile memory 

filesystem
■ POSITIVE: Supports a naming mechanism that ensures file offsets are valid after restart
■ NEGATIVE:  Requires the application’s writes to go through kernel’s VFS
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NVM-aware Memory Allocator

Should provide durability
■ Necessary because the changes made by a 

transaction to a location on NVM may still 
reside in volatile CPU caches when the 
transaction commits

■ This is achieved using CLFLUSH and 
SFENCE instructions

Must provide a naming mechanism
■ Ensure that pointers still point to valid 

locations after a system restart
■ Achieved by the use of non-volatile pointers
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DBMS Testbed
■ Developed a lightweight DBMS to evaluate different 

storage architecture designs for OLTP workloads

■ The DBMS’s internal coordinator receives incoming 
transaction requests from the application and then 
invokes the target stored procedure

■ As a transaction executes in the system, it invokes 
queries to read and write tuples from the database

■ These requests are passed through a query executor that 
invokes the necessary operations on the DBMS’s active 
storage engine

■ The DBMS uses pthreads to allow multiple transactions 
to run concurrently in separate worker threads

■ 3 Storage Engines for durable updates are implemented
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In-Place Updates Engine - InP
The most common storage engine strategy in DBMSs and 
the most efficient  method of applying changes

■ The system writes the new value directly on top of the 
original one

■ Based on VoltDB [5], a memory oriented DBMS
■ Uses STX B+tree library for its indexes [6]

■ Both fixed-sized and variable-length blocks
■ Unsorted tuples within blocks
■ A list of unoccupied tuple slots for each table is 

maintained 
■ The engine uses the allocator interface to maintain the 

indexes and stores them in memory

Storage
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■ InP maintains a durable Write-Ahead Log - WAL in 
the file system 

○ WAL records the transactions’ changes before 
they are applied

■ ARIES recovery protocol is used
○ The engine periodically takes checkpoints that 

are stored on the filesystem to bound recovery 
latency and reduce the storage space 

○ Authors compress (gzip) the checkpoints to 
reduce their storage footprint on NVM

■ Changes made by uncommitted transactions at the 
time of failure are not propagated to the database

Recovery

In-Place Updates Engine - InP
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■ The engine stores the WAL as a non-volatile linked list
■ Appends using an atomic write
■ After all of the transaction’s changes are safely persisted, the 

engine truncates the log

Storage

The InP engine’s logging infrastructure assumes that the 
system’s durable storage device has orders of magnitude 
higher write latency compared to DRAM

■ Increases the mean response latency as transactions 
need to wait for the group commit operation

■ NVM-InP engine only records a non-volatile pointer to 
the tuple in the WAL, rather than copying the tuple to 
the WAL

In-Place Updates Engine - NVM - InP
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In-Place Updates Engine - NVM - InP

■ Committed transactions are durable after the system 
restarts because the NVM-InP engine immediately 
persists the changes made by a transaction when it 
commits 

■ No need to replay the log during recovery
■ Changes of uncommitted transactions may be present 

in the database because the memory controller can 
evict cache lines containing those changes to NVM at 
any time

○ It needs to undo those transactions using the 
WAL

■ As this recovery protocol does not include a redo 
process, the NVM-InP engine has a short recovery 
latency that only depends on the number of 
uncommitted transactions

Recovery



EPL646 - Advanced Topics in Databases 28-11-2017 15

INSERT UPDATE DELETE SELECT

■ Sync tuple with NVM
■ Record tuple pointer 

in WAL
■ Sync log entry with 

NVM
■ Mark tuple state as 

persisted
■ Add tuple entry in 

indexes

■ Record tuple changes 
in WAL

■ Sync log entry with 
NVM

■ Perform modifications 
on the tuple

■ Sync tuple changes 
with NVM

■ Record tuple pointer in 
WAL

■ Sync log entry with NVM
■ Discard entry from table 

and indexes
■ Reclaim space at the end of 

transaction 

■ Find tuple 
pointer using 
index/table

■ Retrieve tuple 
contents

p: size of the pointer

T: size of the tuple
F: size of fixed-length field
V: size of variable-length 
field

ε: small fixed-length writes 
to NVM

In-Place Updates Engine - NVM - InP
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Copy-on-Write Updates Engine - CoW
Creates a copy of the tuple and then modifies that copy

● As the CoW engine never overwrites committed data, it 
doesn’t need to record changes in a WAL for recovery

● Uses different look-up directories for accessing the 
versions of tuples in the database, known as shadow 
paging in IBM’s System R [7] 

○ Current directory points to the most recent versions 
of the tuples and committed transactions 

○ Dirty directory points to tuples being modified
● The engine maintains a master record that always points 

to the current directory
○ Ensure that the transactions are isolated from the 

effects of uncommitted transactions
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Copy-on-Write Updates Engine - CoW

■ CoW engine stores the directories on the filesystem
■ Each database is stored in a separate file
■ Downside: CoW engine creates a new copy of tuple 

even if a transaction only modifies a subset of the 
tuple’s fields

■ Downside: The engine needs to keep track of 
references to tuples from different versions of the 
copy-on-write B+tree to reclaim the storage space 
consumed by old unreferenced tuple versions

○ Increasing wear on the NVM device thereby 
reducing its lifetime

Storage

Recovery
■ No recovery process: If DBMS crashes before the master record updated then changes present in 

the dirty directory are not visible after restart
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The original CoW engine stores tuples in self-containing blocks 
without pointers in the B+tree on the filesystem

■ High overhead of propagating modifications to the dirty 
directory

■ Expensive writes (go through the kernel’s VFS path)

Optimizations

■ Use of non-volatile copy-on-write B+tree
■ Directly persists the tuple copies and only records 

non-volatile pointers in the directory
■ Use of a lightweight durability mechanism to persist 

changes in the B+tree

Copy-on-Write Updates Engine - NVM CoW
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Copy-on-Write Updates Engine - NVM CoW

■ The engine maintains the durability state of each slot 
in both pools similar to the NVM-InP engine

■ The NVM-CoW engine stores the current and dirty 
directory of the non-volatile copy-on-write B+tree 
using the allocator interface

■ It avoids the transformation and copying costs 
incurred by the CoW engine

Storage

Recovery

■ No recovery process as it never overwrites committed 
data

■ Storage space consumed by the dirty directory at the 
time of failure is asynchronously reclaimed by the 
NVM-aware allocator
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INSERT UPDATE DELETE SELECT

■ Sync tuple with 
NVM

■ Store tuple pointer 
in WAL

■ Update tuple state 
as persisted

■ Add tuple entry in 
secondary indexes

■ Make a copy of the tuple
■ Apply changes on the copy
■ Sync tuple with NVM
■ Store tuple pointer in dirty 

dir
■ Update tuple state as 

persisted
■ Add tuple entry in 

secondary indexes

■ Remove tuple 
pointer from dirty 
dir

■ Discard entry from 
secondary indexes

■ Recover tuple 
space immediately

■ Locate tuple 
pointer in 
appropriate dir

■ Fetch tuple 
contents from 
dir

p: size of the pointer

T: size of the tuple
F: size of fixed-length field
V: size of variable-length 
field

ε: small fixed-length writes 
to NVM

Copy-on-Write Updates Engine - NVM CoW
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Log-structured Updates Engine
■ Uses log-structured update policies by 

utilizing LSM Trees [8]

■ Each LSM Tree consists of a collection of 
runs of data [9]

■ Each run contains an ordered set of 
entries with changes performed on tuples

■ Runs reside in volatile and durable 
memory e.g. MemTable and SStable

■ Design based on Google’s LevelDB [10] - 
uses leveled LSM Tree, each level with 
changes of a single run

21
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Log-structured Updates Engine
Storage:
■ When size of MemTable exceeds the 

threshold, the engine flushes it in SSTable to 
filesystem

■ Performs well with write-intensive workloads 
by reducing random writes

■ Poor performance in high read amplification - 
index look up all runs [11]

■ Solution: periodic compaction process for 
merging subsets of SSTables into a new one

Recovery:
■ MemTable is volatile, thus WAL is maintain in 

order to recover from logs
■ Replays the log and then remove changes that 

are uncommitted
22
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Log-structured Updates Engine - NVM-Log
Storage:
■ Batches all writes in MemTable to reduce 

random accesses on durable storage [9, 12]
■ Original Log-Structure Update Engine incurs 

large overhead from flushing MemTable and 
compacting SSTable

■ Instead of flushing, marks existing as 
immutable and creates new MemTable

■ Logging overhead lower - less data and 
maintains WAL with allocator interface

Recovery:
■ NVM-aware recovery protocol does not rebuild 

MemTable but undo the effects of 
uncommitted transactions

23
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Log-structured Updates Engine - NVM-Log

24

INSERT UPDATE DELETE SELECT

■ Sync tuple with 
NVM

■ Record tuple 
pointer in WAL

■ Sync log entry 
with NVM

■ Mark tuple state 
as persisted

■ Add tuple entry in 
MemTable

■ Record tuple 
changes in WAL

■ Sync log entry 
with NVM

■ Perform 
modifications on 
the tuple

■ Sync tuple 
changes with 
NVM

■ Record tuple 
pointer in WAL

■ Sync log entry 
with NVM

■ Mark tuple 
tombstone in 
MemTable

■ Reclaim space 
during 
compaction

■ Find tuple entries 
in relevant LSM 
runs

■ Rebuild tuple by 
coalescing 
entries

T: size of tuple 
F: size of fixed-length field
V: size of variable-length field
θ: LSM compaction factor
ε: small fixed length size
p: size of a pointer
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Benchmarks
■ YCSB: Yahoo key-value workloads for web-based companies transactions

○ Transaction types: 
■ Read actions to retrieve single tuple based on primary key
■ Update transactions to modify single tuple based on primary key

○ Workload mixtures:
■ Read-Only - 100% Read
■ Heavy-Read - 90% Read and 10% Write
■ Balanced - 50% Read and 50% Write
■ Write-Heavy - 10% Read and 90 % Write

○ Skew Levels:
■ Low Skew - 50% of the transaction access 20% of the tuples
■ High Skew - 90% of the transaction access 10% of the tuples

■ TPC-C: Industry standard for evaluating OLTP systems
○ Five transaction types from wholesale suppliers

25
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NVM-Log

NVM-CoW

NVM-InP

Log

CoW

InP

Runtime Performance
■ NVM’s latency impact analysis on the performance of the storage engines
■ Run the benchmarks under three different latency configurations:

○ Default DRAM latency configuration - 160 ns
○ A low NVM latency configuration - 2x higher than DRAM with 320 ns
○ A high NVM latency configuration - 8x higher than DRAM with 1280 ns

26

YCSB Benchmark Performance Analysis

DRAM 
Latency
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NVM-Log

NVM-CoW

NVM-InP

Log

CoW

InP

Runtime Performance

27

YCSB Benchmark Performance Analysis

NVM 
Low 

Latency

NVM 
High 

Latency

The performance of the 
engines for TPC-C 
benchmark for all three 
NVM latency settings
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■ Measure the times that the storage engines access the NVM device while 
executing the benchmark

■ Important because different NVM technologies have limits on write cycles 
per bit

■ Measure using hardware performance counters that track the number of 
loads (reads) and stores (writes) 

NVM-Log

NVM-CoW

NVM-InP

Log

CoW

InP

Reads and Writes

YCSB Benchmark Performance Analysis

YCSB 
NVM 

Reads

28
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NVM-Log

NVM-CoW

NVM-InP

Log

CoW

InP

Reads and Writes
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YCSB Benchmark Performance Analysis

YCSB 
NVM 

Stores

TPC-C Benchmark Performance Analysis

TPC-C 
NVM 
Loads

The number of load and store 
operations executed by the storage 
engines while running the TPC-C 
benchmark
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■ For each benchmark authors execute a fixed number of transactions and then force a hard shutdown - 
SIGKILL

NVM-Log

NVM-InP

Log

InP

Recovery

30

■ The latency of the InP and Log engines grows 
linearly 

○ Redo the effects of committed transactions 
before undoing the effects of uncommitted 
transactions

The NVM-aware engines have a short recovery that is always less than a second

■ NVM-aware engines’ recovery time is 
independent of the number of 
transactions executed 

○ Only undo the effects of the transactions 
that are active at the time of failure
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■ Analyze the time that the engines spend in their internal components during execution
■ Only YCSB with low skew and low NVM latency configuration
■ Use event-based sampling with the perf-framework to track the cycles executed within the 

engine’s components

Categories

■ Storage Management operations

■ Recovery Mechanisms

■ Index accesses and maintenance

■ Other components

Execution Time Breakdown

31
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■ NVM-aware engines spend 13-18% of their time on recovery tasks compared to traditional engines (33%)
■ Engines performing copy-on-write updates spend a higher proportion of time on recovery-related tasks

○ Cost of creating and maintaining the dirty directory for large databases, even using efficient B+tree
■ Log and NVM-Log spend a higher fraction of their time on index look-ups

○ They perform multiple index look-ups on the LSM tree to reconstruct tuples

32

Execution Time Breakdown
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The amount of space that it uses for storing tables, logs, indexes, and other internal data structures 
■ This metric is important because we expect that the first NVM products will initially have a higher cost than current 

storage technologies

33

■ CoW engine has high overhead (creating directories 
and copying tuples)

■ NVM-aware engines consume 17-21% less storage 
space than traditional engines

■ 31-38% smaller storage footprints
■ More significant because TPC-C is 

write-intensive with longer running 
transactions

Storage Footprint 
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Conclusion
■ NVM-aware engines outperform the traditional engines by up to 5.5 times while reducing the 

number of writes to the storage more than half on write-intensive workloads
■ NVM access latency has the most impact on the runtime performance, more than the amount 

of skew or the modifications number
■ The NVM-aware engines perform fewer store/write operations than the traditional ones, thus 

extending NVM device lifetimes.
■ Smaller storage footprint due to allocator interface usage with non-volatile pointers for data 

structures
■ NVM-InP engine overall performs better across the workload mixtures, skew settings and 

NVM latencies
■ NVM-CoW engine did not perform well for write-intensive workloads - better fit for DBMSs’ 

that support non-blocking, read-only transactions
■ NVM-Log essentially performs in-place updates like NVM-InP without additional overhead 
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