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Abstract—In this paper, we present an innovative framework
whose objective is to allow drivers to recharge their Electric
Vehicles (EVs) from the most environmentally friendly chargers
using an intelligent hoarding approach. These chargers maximize
renewable (e.g., solar) self-consumption, minimizing this way CO2
production and also the need for expensive stationary batteries
on the electricity grid to store renewable energy that cannot
be used otherwise. We model our problem as a Continuous k-
Nearest Neighbor query, where the distance function is computed
using Estimated Components (ECs), i.e., a query we term CkNN-
EC. An EC defines a function that can have a fuzzy value
based on some estimates. Specific ECs used in this work are:
(i) the (available clean) power at the charger, which depends
on the estimated weather; (ii) the charger availability, which
depends on the estimated busy timetables that show when the
charger is crowded; and (iii) the derouting cost, which is the
time to reach the charger depending on estimated traffic. We
devise the EcoCharge framework that combines these multiple
non-conflicting objectives into an optimization task providing
user-defined ranking means through an intuitive mobile GIS
application. Particularly, our core algorithm uses lower and
upper values derived from the ECs to recommend the top ranked
EV chargers and present them through an intuitive map user
interface to users. Our experimental evaluation with extensive
synthetic and real traces from Germany, China, and USA along
with EV charger data from Plugshare shows that EcoCharge
meets the objective functions in an efficient manner, allowing
continuous recomputation on the edge devices (e.g., Android
Automotive OS, Android Auto or Apple Carplay).

Keywords-Mobile Data Management, Green Mobility, Renew-
able Self-Consumption, Electric Vehicles, Charging.

I. INTRODUCTION

The market penetration of electric vehicles (EVs) has wit-
nessed an exponential growth in recent years, owing to their
exceptional advantages over conventional internal combus-
tion vehicles in terms of sustainable transportation and cost-
effectiveness. Cities play a pivotal role in achieving climate
neutrality by 2050, the goal of the European Green Deal1,
as they are accountable for over 65% of the world’s energy

‡The work of this author is partially supported by NSF Grant IIS-2203553.
1EU Climate-Neutral Smart Cities, https://tinyurl.com/57tzjmyk

consumption and 70% of global CO2 emissions. In recent
years, there has been an increasing interest in the integration
of Renewable Energy Sources (RES) with Electric Vehicle
(EV) charging infrastructure [1], [2] (i.e., photovoltaic panels,
wind turbines). People frequently tend to charge their EVs
during idle times, even when the battery is not substantially
depleted, to ensure that the vehicle will be charged sufficiently
when required for travel; a habit we term energy hoarding.
EVs are seen as a way to improve the environment and
reduce greenhouse gas emissions. Energy hoarding with non-
renewable energy is negating environmental benefits. In the
U.S., the EV energy charging demand was attributed to 4.7
terawatt hours in 2020, and is expected to increase to ≈107
terawatt hours by 20352.

The research based on various approaches to optimize the
charging of EVs utilizing RES, is a prominent research area at
present time [3]. Current applications (e.g., Plugshare, Ionity,
Tesla’s supercharger, EnBW, Shell recharge) focus on allowing
users know where to recharge but do not list the environmental
impact of the charging process (i.e., energy might come from
fossil fuel burning). Different optimization techniques such
as smart charging [4], and vehicle-to-grid (V2G) systems [5]
are being explored to improve the environmental impact of
the charging process and minimize the strain on the power
grid. Additionally, regenerative energy methods are applied in
loaded electric trucks during their downhill trip through energy
recuperation, thus, creating enough energy to get the empty
truck uphill again [6]. To the best of our knowledge, there is
no other work focusing on sustainable EV energy hoarding.

A renewable hoarding technique can be applicable in scenar-
ios with idle time (i.e., while an EV user is waiting or parked).
For example, consider the following real-life scenarios: (i)
electric taxis (e.g., Lyft, Uber, Bolt) during idle periods are
waiting to be called or booked online; (ii) parents waiting
in their idle EVs while their children attend after-school
activities; and (iii) an EV user going for groceries or clothing

2Statista-EV charging demand, https://tinyurl.com/mtc6w8nt



Fig. 1. EcoCharge application: An Offering Table (O) example of a
moving vehicle based on a scheduled trip P . The ranking selection is derived
from each EV charger’s rate and solar production curve at a certain time,
considering also the estimated time of arrival (ETA), and the return trip time.

shopping. This can also be applied in other similar situations
where EV users are engaged in activities that require idle time,
such as attending meetings, events, or conferences. Conse-
quently, in all aforementioned scenarios, users could stop or
deroute at some nearby charging station to efficiently charge
their EVs using power generated from renewable sources, thus,
reduce the carbon footprint of their daily routine.

One technical challenge, is that the decision of where to
sustainably hoard depends on a variety of Estimated Com-
ponents (ECs) on where and when to charge. Examples of
these estimations are: the derouting cost to reach the charger
that depends on estimated traffic, the (available clean) power
at the charger that depends on the estimated weather, and
the charger availability that depends on the estimated busy
timetables showing when the charger is crowded. In such a
dynamic context, traditional indexing approaches may not be
the most suitable solution, given the continuous changes [7].

To solve this problem, a Continuous k-Nearest Neighbor
(CkNN) query [8] can be utilized to answer questions like
which EV chargers are closer to a path P . CkNN is a
query that can retrieve the k nearest neighbors of a given
path, however, it does not consider the estimation of various
components. Our work falls under the concept of renewable
hoarding techniques exploiting ECs. The objective is to opti-
mize EV charging by utilizing only RES and focusing solely
on short-term traveling (i.e., urban setting), ignoring multi-
stop planning (e.g., VW Multi-Stop EV Route Planner or
abetterrouteplanner.com).

We model the problem as a new CkNN-EC query that
retrieves the k nearest neighbors of every point on a path
segment (e.g., “find all my nearest EV chargers during my
route from source to end point.”), while considering ECs by
employing a distance function that can express a fuzzy value.

Let us assume B as a dataset of EV charging stations
on a road network, where a CkNN-EC query retrieves the
nearest neighbor (e.g., k=1) of every path segment p of
path P . Particularly, the result is a set of <b, p>, where

b is an EV charging point of B. As a simplified example
scenario, consider Figure 1, where B={b1,...,b20}. Therefore,
considering the path P and emphasizing on moving at the
direction of the final destination, the 1NN result of the query is
{< b7, p1 >, < b3, p2 >, < b3, p3 >, < b1, p4 >, < b4, p5 >,
< b5, p6 >, < b5, p7 >, < b5, p8 > }, meaning that charger
b7 is the nearest neighbor for the segment of path p1. The
proposed approach utilizes a prediction model with respect to
the weather forecast, derouting cost, and charger’s availability.
The points within the path segment (i.e., (xs, ys), ..., (xe, ye))
at which a transition in neighborhood occurs are referred to
as split points SL [8].

In this work, we present an innovative renewable hoard-
ing application for charging EVs, dubbed EcoCharge. Our
approach utilizes a CkNN-EC search and a dynamic caching
technique to generate Offering Tables with sustainable chargers
for urban traveling, in a reasonable response time. The ranking
is derived from the cost function, which employs an iterative
deepening process to determine the kNN sets with EV chargers
from the query point within a predefined time window, while
considering ECs, expressed through intervals (i.e., ranges of
min-max values). EcoCharge can be used over three different
Modes: (i) Mode 1, operating in a vehicle’s embedded operat-
ing system (e.g., Android Automotive OS, Volkswagen OS3);
(ii) Mode 2, where calculations are conducted centrally on a
server; and (iii) Mode 3, where functionalities are managed
by an edge device (e.g., smart phone using Android Auto or
Apple CarPlay).

Our solution enables a user to find a CO2-neutral plan
in a road network for charging during an idle period or a
short-time trip. The efficiency of the proposed method is
measured by: (i) the Sustainable Charging Level (L); (ii)
the Availability (A); (iii) the Derouting Cost (D); and (iv)
CPU Execution Time (Ft). Our goal is to make a significant
contribution to the niche market of environmentally-conscious
EV charging, particularly in alignment with the European
Union’s environmental targets for 2030 [9].

In summary, in this paper we make the following contribu-
tions:

• We propose a Continuous k-Nearest Neighbor search with
Estimated Components (CkNN-EC) to efficiently find the
nearest EV chargers of a moving object at each timestamp
based on a scheduled trip, while considering ECs.

• We present EcoCharge, an innovative renewable hoarding
application for EV charging in urban settings, integrated
with CkNN-EC and a dynamic caching technique to
minimize derouting traveling and maximize sustainable
charging level.

• We evaluate our algorithm through an extensive exper-
imental series on real and synthetic datasets of road
network vehicle trajectories (i.e., Oldenburg, California,
T-drive, and Geolife) utilizing measurements from EV
chargers and weather forecast, showing that EcoCharge
can be premise for green mobility in the future.



The remainder of the article is organized as follows: Sec-
tion II presents the system model and formulates the problem,
where Section III describes the EcoCharge Framework while
Section IV discusses its internal architecture and implementa-
tion. Our experimental methodology is presented in Section V,
the related work in Section VI, and the article is concluded in
Section VII.

II. SYSTEM MODEL & PROBLEM FORMULATION

In this section, we formalize our system model, problem
formulation, and the basic terminology used throughout this
manuscript. The main symbols and their respective definitions
are summarized in Table I.

A. System Model

We consider a road network as a directed weighted graph
G = (V,E), where V is a set of nodes (vertices) and E is a
set of edges. Each node v has a spatial coordinate (v.x, v.y)
defining its longitude and latitude. On every single edge (u, v)
∈ E(u, v ∈ V ), a weight is assigned w(u, v), representing
the energy cost to travel from point u to v. One can consider
the travel cost as the length of the road segment, the time
required to pass the road segment, or other costs like energy
consumption or CO2 emissions. Each vehicle moving on the
road network is indicated by m and has certain geographic
coordinates, namely locm.

We consider a set of public charging points B linked to
nearby Renewable Energy Sources (RES) in an urban setting.
We also assume numerous electric vehicles moving arbitrarily
on the road network G. We assume that each vehicle m is
equipped with a charging mobility app, such as EcoCharge,
which can recommend charging points for every path segment
p of a scheduled trip P .

We denote the availability of clean energy (measured in
kWh) at the charger b ∈ B, over a user-specified time window
t, as L. The value of t is derived from the Estimated Time
of Arrival (ETA) the user receives through a cooperating
navigation app (e.g., Google Maps or Waze). Without loss
of generality, we assume that clean energy might come from
either local sources (e.g., locally attached solar panels on
carports) or virtually net-metered/net-billed from a remote
renewable energy production farm. Given that clean energy
might fluctuate based on the weather conditions, L is a
prediction, or Estimated Component (EC), as we term it in
this work. We denote the physical availability of a charger
at time point t, as A. Again, given that A is based on how
crowded the charger is at different times of a day, A is also an
EC. We denote the energy required for vehicle m to reach a
prospective charger b as the derouting energy cost (measured
in kWh), as D. Given that traffic on the road network might
fluctuate (e.g., based on time and day), D is also an EC.

The EcoCharge app displays at all times while m is on the
move, an Offering Table O (e.g., every few minutes) that is
computed either in the cloud or on the edge (i.e., on vehicle
m). We will outline the architectural approaches to where
EcoCharge executes in Section IV. In cases where the range

TABLE I
NOTATION USED THROUGHOUT THIS WORK

Notation Description
b, B EV charger b, Set of all b
m, M Electric vehicle m, Set of all m
p, P p is a path segment of P , P is a scheduled trip
G Road network (consists of V nodes and E edges)
O Offering Table of the top ranked EV chargers
L Sustainable charging level
A Charger’s availability
D Derouting cost (distance from m to b)
t Time (e.g., ETA)
s Solar photovoltaic power generation
Ft CPU execution time

distance from previous to current EV’s location is within a
configured parameter, then a re-generation of an O is avoided,
and an adaptation of a previously generated solution occurs.

B. Problem Formulation

The goal of this work, is to efficiently compute and provide
to all EV drivers on a road network an Offering Table O
with sustainable chargers over a large search space based on
their short-range trip (i.e., urban driving). The notion of O is
based on the minimization of EV-to-charger derouting travel
distance, while simultaneously considering availability and
green charging by adopting self-consumption of RES based
on ETA.

The intention of the EcoCharge app is to optimize an objective
function to achieve a trade-off between the vehicle’s sustain-
able charging level L, the chargers’ availability A, and the
derouting travel distance D to a charger.

III. THE ECOCHARGE FRAMEWORK

In this section, we outline the functionality of EcoCharge,
providing a comprehensive explanation of its internal phases,
which is subsequently followed by an illustrative example of
its operation.

A. Outline of Operation

EcoCharge employs a Continuous k-Nearest Neighbor
search with Estimated Components (CkNN-EC) query to as-
certain the collection of nearest neighbors (i.e., nearest EV
chargers) for all future path segments of P . Particularly, we
can think about this query generating concurrently multiple
kNN results, i.e., one for each segment of a trip P . The results
to the kNN computation effectively yield what we consider as
an Offering Table O, which comprises of multiple sub-results
Op1, ..., Opn. To avoid numerous database scans, we pass the
entire pool of segments once (along with their corresponding
coverage). Particularly, our method begins with an initial SL
composed of only two split points (xs, ys) and (xe, ye) with
their associated covering points set to 0 (indicating that nearest
neighbors of all points within the segment pi are currently
unknown). At every step, SL comprises the current result
according to all processed points so far. For each split point
(xi, yi) ∈ SL(0 ≤ i < |SL| − 1) : (xi, yi) ∈ pi and all points



in pi have the same nearest neighbors, expressed as NNpi
. The

final output comprises every split point (xi, yi) that remains
in SL after the termination, along with its nearest neighbors
NNpi .

Our framework processes each vehicle m on the road
network at any given time based on the following steps:

• Step 1: Gets user’s scheduled trip P on a road network G
and partitions it in segments of p ≈3-5km or respective
time window. This setting can be modified according to
the user’s needs and preferences.

• Step 2: Searches for closest b considering the L, A, D
objectives and calculating a unified Sustainable Charging
(SC) score.

• Step 3: Displays to the driver an Offering Table (O)
to decide and select an EV charging location from the
collected available options.

B. EcoCharge Objectives

The efficiency of the proposed technique is measured by
the following metrics: (i) Sustainable Charging (L) level; (ii)
Availability (A) score; and Derouting (D) cost.

Sustainable Charging Level (L): Each EV charging station
b has a different charging rate and power generation levels
st depending on time and location. In this work, we do not
consider energy imported from the grid, but only solar excess
produced, as we aim to generate zero CO2 emissions during
the EV charging phase (i.e., renewable hoarding). Further,
the sustainable charging level considers the weather forecast
(e.g., sunny, cloudy) at a given time and location retrieved
by a cloud service (e.g., OpenWeather, Windy, WindFinder),
which utilizes weather models like Global Forecast System
(GFS) [10] and European Centre for Medium-Range Weather
Forecasts (ECMWF) [11], both with accuracy of 95–96% for
up to 12 hours and 85–95% for three days. L consists of a
lower and upper estimation values, thus, the final result is an
interval Lmin to Lmax. We normalize these values by dividing
them with the environment’s maximum charging level value.

L(B) = max{sbt | ∀ b ∈ B } (1)

Availability (A): Each EV charger’s availability is estimated
using some third-party service (e.g., Google Maps POI busy
timetables), as shown in Figure 2, enabling the determination
of real-time accessibility on a given time t. Therefore, an
interval is produced Amin to Amax. We express these values
in percentages, with 0% being not busy and 100% being busy.

A(B) = max{Ab | ∀ b ∈ B } (2)

Derouting Cost (D): A route path from starting point v0 to tar-
get charger vk is a sequence of nodes P =< v0, v1, ..., vk >,
where w represents the edge weight in terms of CO2 emissions
(e.g., or kWh consumed). In case derouting is needed to
arrive at a selected charger outside the initial scheduled trip,
CO2 emissions will be added to the total calculated travel
cost respectively. In case the charger is located on the path of

Fig. 2. Popular times of an EV charger’s availability estimation example
through Google Maps.

the scheduled trip, no derouting occurs, thus no extra CO2
emissions will be added. Further, the derouting accurately
considers real-time traffic information (e.g., congestion) at a
given time and location retrieved from a cloud Geographic
Information System (GIS) service (e.g., Google Maps, Waze,
HERE Maps), thus, D consists of a lower and upper estimation
values. Therefore, the final result is an interval Dmin to
Dmax. We normalize these values by dividing them with the
environment’s maximum derouting distance. The minimum
derouting cost for a segment p of the path P to all chargers
B is:

D(B) = min{
|p|∑
i=0

wvi,b ∗ distance(vi, b) | vi ∈ p, ∀ b ∈ B}

(3)
The equation ensures the minimization of D and consequently
the reduction of CO2 emissions since they are correlated.

Sustainability Score (SC): In this paper, we evaluate SC as
a weighted sum function, where w1 the weight of Sustainable
Charging Level (L) objective, w2 the weight of Availability
(A) objective, and w3 the weight of the Derouting Cost (D)
objective, respectively. These weights are user-configurable
to tailor the decision-making process according to users’
individual preferences and priorities. Using CkNN with SC
as the distance function, EcoCharge produces two result-sets,
one based on SCmin and another on SCmax, and the final
output is their intersection, which contains k chargers.

SCmin = (Lmin∗w1)+(Amin∗w2)+((1−Dmin)∗w3) (4)

SCmax = (Lmax∗w1)+(Amax∗w2)+((1−Dmax)∗w3) (5)

SC(B) = sort(SCmax(b) ∩ SCmin(b)),∀b ∈ B (6)

Additionally, the proposed approach is also discussed with
respect to CPU Execution Time (Ft), which is the processing
time required by the algorithm for running the weighted sum
optimization function and generating the output.

C. The EcoCharge Algorithm

In this section, we present the algorithmic solution behind
the EcoCharge Framework, coined EcoCharge, presented in
Algorithm 1.



Algorithm 1 EcoCharge: An Energy Hoarding Algorithm for Sustainably Charging Electric Vehicles (EVs)
Input: B: set of all EV chargers; P : scheduled trip; m: EV’s information; s: solar energy production data;
Output: A generated Offering Table O, consisted of sustainable EV chargers (i.e., CkNN-EC of B)

1: EcoCharge(B,P,m, s) ▷ Renewable Hoarding Algorithm for Sustainable Charging
2: p← tripSegmentation(P ) ▷ divides scheduled trip into path segments
3: for each (b ∈ B) ▷ iterates through all EV chargers
4: ETA← estimatedT imeArrival(locb, locm)
5: Lmin(b) ← sustainableMinChargingLevel(b, s, ETA) ▷ Sustainable Charging Level
6: Lmax(b) ← sustainableMaxChargingLevel(b, s, ETA)
7: Amin(b) ← availabilityMin(locb, ETA) ▷ Availability
8: Amax(b) ← availabilityMax(locb, ETA)
9: Dmin(b) ← deroutingMinCost(locb, locm, p) ▷ Derouting

10: Dmax(b) ← deroutingMaxCost(locb, locm, p)
11: SCmin(b) ← CkNN EC Min(Lmin(b), Amin(b), Dmin(b)) ▷ lower estimation set
12: SCmax(b) ← CkNN EC Max(Lmax(b), Amax(b), Dmax(b)) ▷ upper estimation set
13: SC∗

min(b) ← SC∗
min(b) + [SCmin(b)] ▷ stores lower estimation Sustainability Score

14: SC∗
max(b) ← SC∗

max(b) + [SCmax(b)] ▷ stores upper estimation Sustainability Score
15: end for each
16: SC ← SC∗

max(b) ∩ SC∗
min(b) ▷ finds the common chargers between SCmin and SCmax

17: O ← sort(SC) ▷ sorts the SCs (highest to lowest rank b optimizing the SC score)
18: return (O) ▷ returns a generated Offering Table

In order to continuously monitor the result of kNN, the
CkNN-EC method necessitates partitioning the entire route
distance into separate segments (see line 2), which are se-
quentially considered for the kNNs determination of the query
object. The partitioning procedure is responsible to divide the
scheduled trip P into segments (e.g., ≈5km each segment;
can be modified in settings as per preference). It is essential
to note that the road network distances between all chargers
and the query object (i.e., EV vehicle) have to be updated
every time the query object reaches a segment intersection
SL of the scheduled trip. For each segment pi, the process
of finding the kNNs is composed of two phases. The first
one is called Filtering phase, which is used to discard non-
qualifying chargers. The second phase is called Refinement,
where an evaluation is conducted to determine the eligibility
of candidate chargers as CkNN-EC utilizing the equation 6.

Filtering Phase: According to the driver’s location (e.g.,
segment pi), the Filtering process ensures that only the k most
suitable chargers are considered, while pruning all the rest. The
particular phase loops through the entire pool of EV chargers
and examines each one based on several estimation compo-
nents. The first component is the sustainable charging level
(L), which considers charger’s rate and the power generation
at a given time (lines 5-6). Since the weather conditions might
change at any time (e.g., sunny clear sky becomes cloudy in
10 minutes), upper and lower estimations are also considered.
The second component focuses on the charger’s availability
(A) based on ETA. This means that our approach analyzes
when EV users are expected to arrive at a station, allowing for
the estimation of potential peak usage times and ensuring that
chargers are accessible. The second component is similarly to
the previous case, an interval that is generated with upper and

lower availability values (see lines 7-8). The last component is
the derouting cost (D), which calculates the distance and time
required to reach a station and to return back to the scheduled
trip. The returning back phase could either mean going back to
the same segment pi or going to the next one (i.e., pi+1), thus,
whichever has the less derouting is selected (or can be a user
preference). Lower and upper estimation values are taken into
account due to the varying traffic conditions and unexpected
situations (lines 9-10).
Refinement Phase: In this phase, each charging station se-
lected in the pool of filtered candidates undergoes another
assessment to evaluate suitability. The assessment is conducted
by applying equation 6, which utilizes an intersection in the
minimum and maximum interval values of Sustainability Score
SC (see line 16). Thereafter, a sustainability function sorts
results (see line 17) to ensure that only the most relevant
and efficient charging stations are identified, contributing to
an optimized renewable hoarding strategy for the user.
Example: Consider the scenario illustrated at the right side
of Figure 3, where a vehicle m is on a scheduled trip P
(i.e., consisted of several path segments pi ∈ P ) and there
are 20 EV charging stations b1, .., b20. Let us assume that the
weather forecast for the 1-hour trip (i.e., 10:00am-11:00am)
is sunny, which means the EV chargers produce sustainable
energy. The user (with an 11kW AC charger car) wishes at
timestamp 10:15am to visit a station to charge his/her EV.
The decision on where to charge is made based on the user’s
current location, sustainable charging level L at b based on
weather conditions, physical availability A of b, and derouting
cost D to b. For simplicity we do not consider any weights in
this example. Considering the nearest chargers with respect
to vehicle’s location at 10:15am and path segment p4, we



Fig. 3. Example of a Continuous k-Nearest Neighbor query with Estimated
Components (CkNN-EC). An illustration of a selected EV charger in a specific
path segment (p) of the scheduled trip (P ).

have several options: (i) Charger b1 is available and derouting
costs Db1 = -2kWh, while sustainable charging gains Lb1 =
+9kWh, thus SCb1 = +7kWh; (ii) Charger b2 is available and
derouting costs Db2 = -1kWh, while sustainable charging gains
Lb2 = +4kWh, thus SCb2 = +3kWh; and (iii) Charger b3 is
available and derouting costs Db3 = -2kWh, while sustainable
charging gains Lb3 = +4kWh, thus SCb3 = +2kWh. Therefore,
the ranking for the path segment is as follows < b1, b2, b3 >
(highest to lowest).

IV. THE ECOCHARGE ARCHITECTURE

In this section, we describe the comprehensive architecture
of our framework. The core of our system resides in an
EcoCharge Client supported by a centralized server, which
interacts with external APIs to retrieve essential data (see Fig-
ure 4). Leveraging external APIs, our EcoCharge Information
Server (EIS) acquires real-time weather forecast data, detailed
road network information, and a comprehensive list of all
available EV charging stations based on user’s location. This
centralized approach allows the server to efficiently consoli-
date the required data and distribute to individual clients as
per request. Our framework mitigates the need for redundant
API call requests by intelligently employing a smart caching
mechanism, called Dynamic Caching presented in this section.

The service can be provided to the users with three modes of
operation: (i) Mode 1, where EcoCharge operates in a vehicle’s
embedded operating system (e.g., Automotive OS, Volkswa-
gen OS3); (ii) Mode 2, where EIS takes over EcoCharge
calculations centrally; and (iii) Mode 3, where EcoCharge
functionalities are managed by an edge device (e.g., smart
phone using Android Auto or Apple CarPlay).

A. EcoCharge Client

Upon receiving, through an API call, the weather forecast,
road network details, and EV charging station information
from the EIS, the client application takes on the pivotal
role of processing this data. Tasked with the responsibility

Fig. 4. EcoCharge Architecture: the server takes as an input all available
EV chargers, weather forecast, availability, traffic data, and road network
information. The collected data are provided to the client through three
discrete modes of operations.

of route optimization, the client application employs a novel
algorithmic approach (see Algorithm 1) to calculate the most
efficient route considering sustainable charging and derouting
cost based on the user’s scheduled trip. This process involves
dynamically identifying EV chargers along the route, consid-
ering factors such as real-time sunlight conditions, road net-
work intricacies, and availability. Hence, users make informed
decisions about their EV charging strategy while minimizing
environmental impact (see Figure 5a).

EcoCharge Client continuously recomputes the path using
a ≈3-5 minutes window, which could change the initial route
to accommodate a visit to an offering charging station. This
deviation is done with the objective of finding a more efficient
overall route (i.e., current location to charger, and charger
to destination), which includes the additional distance to and
from an EV charging station.

B. EcoCharge Implementation

In this subsection, we describe the technologies utilized for
the implementation of our proposed framework. EcoCharge
Client, prototyped in Python 3, leverages the capabilities of the
Folium3 library - a robust tool designed for creating diverse
Leaflet maps. The utilization of Folium is integral to our
system’s functionality, providing a dynamic and interactive
mapping component. It empowers our system to generate
visually compelling maps with various layers and features,
enhancing the user experience and facilitating a comprehensive
understanding of geographical data. Through the integration of
Leaflet, HTML, and JavaScript, we ensure that our system
not only delivers powerful functionality, but also presents
information in a visually engaging and accessible manner. This
strategic use of technology aligns with our commitment to
providing users with an intuitive and effective platform for
exploring geographical data.

3Folium, https://python-visualization.github.io/folium/



Fig. 5. (a) EcoCharge Client GUI: First four images show GUI preferences and route functionalities used by EcoCharge to generate an Offering Table with
the most sustainable chargers identified; (b) Dynamic Caching (bottom up strategy): The graph on the right side is an example demonstrating the adaptation
of an already generated Offering Table (i.e., O1 to O2) consisted of the higher SC chargers. ON is the last Offering Table at user’s final destination.

Our mobile-based application enhances user experience by
integrating with the device’s location services. Through an
intuitive GUI, users can easily set their desired destination
for a trip and receive comprehensive route information, lever-
aging the application’s functionality for efficient navigation.
EcoCharge acquires multiple input parameters critical for
its processing. It gathers comprehensive data, including the
locations of all available EV charging stations retrieved by
PlugShare4, real-time weather forecasts, and user preferences.
To gauge environmental conditions such as sunlight availabil-
ity, we rely on data from OpenWeatherMap5, an API ser-
vice offering up-to-the-minute weather information for diverse
global locations.

Moreover, EIS is designed using the Laravel6 PHP Model-
View-Controller Framework, ensuring a robust and organized
structure, and it is deployed with the high-performance Nginx7

web server for efficient handling of HTTP requests. It effi-
ciently retrieves road network information by integrating with
OpenStreetMap8, a robust and versatile mapping and location
data platform. Leveraging OpenStreetMap allows us to tap into
a wealth of detailed road network data, including information
on streets, highways, and various transportation routes. This
integration empowers our application to provide users with
accurate and up-to-date maps, ensuring a comprehensive un-
derstanding of the road infrastructure.

C. Dynamic Caching

EcoCharge adapts a dynamic caching method by breaking
the problem space down to smaller, simpler sub-problems
and solving each one only once. It stores solutions (i.e.,
Offering Tables) and API responses in a table and uses
them to solve similar problems until the overall problem is
completely solved. The advantage of our applied technique,
is the ability to avoid redundant computations and reduce

4PlugShare-EV Charging Stations, https://www.plugshare.com/
5OpenWeatherMap, https://openweathermap.org/
6Laravel MVC, https://laravel.com/
7Nginx, https://www.nginx.com/
8OpenStreetMap: https://www.openstreetmap.org/

the overall complexity of the problem by re-using already
generated solutions on corresponding cases, hence, leading to
significant speedup. A caching hypothesis can be made as the
decision space exposes temporary behavior, namely a solution
will naturally be invalidated after a certain time point (t) as L,
A, D objectives will naturally be invalid after t. Specifically,
we have utilized a bottom-up approach where sub-problems
are solved separately and their results are stored in a table,
which can then be used to solve future queries.

To clearly express the utilized dynamic caching bottom-up
approach, consider an EV user’s current location pi in a road
network with various charging stations B. EcoCharge will
normally start calculating each charger’s Sustainability Score
SCb (i.e., solving sub-problems) to form an Offering Table
O1 based on user’s location (see Figure 5b). The O1 consists
of the best charging stations sorted, having the highest SC
charger first. Then, following the driver’s next location pi+1

according to a scheduled trip, a new problem will need to be
tackled. Considering the distance between the last and current
locations, an already calculated solution can be re-applied
in the context of solving a larger problem. To address this,
we have utilized radius R, which allows users to receive EV
chargers within their desired geographic radius, and parameter
Q, which indicates users’ preferred distance from previous to
current location for getting server updates and calculating new
solutions. In this manner, our algorithm does not need to loop
through the entire search space of chargers for every new path
segment in case previous EV location’s requirements match R
and Q parameters. Hence, O1 can be adjusted to O2, in case
parameter conditions are satisfied, and this carries on to the
next EV path segments until the user’s final destination.

In particular, before a new Offering Table is generated
and provided to the user, EcoCharge examines the previous
and current location in order to decide whether it needs to
re-generate a new solution or the previously generated one
can be applied. Consequently, our applied hoarding method
minimizes CPU execution time by eliminating unnecessary
computations over the large search space of chargers and
enables CO2-neutral EV charging.



V. EXPERIMENTAL METHODOLOGY & EVALUATION

This section presents an experimental evaluation of our pro-
posed approach. We start-out with the experimental method-
ology and setup, followed by various experiments conducted
that expose the core benefits of our EcoCharge framework.

A. Methodology
This section provides details regarding the algorithms, met-

rics and datasets used for evaluating the performance of our
approach.

Testbed: Our evaluation is carried out on our laboratory
VMware private datacenter. Our computing node comprises
of a Ubuntu 22.04 server image, featuring 6GB of RAM with
4 virtual CPUs (@ 2.60GHz). The image uses fast local 10K
RPM RAID-5 LSILogic SCSI disks, formatted with VMFS 6
(1MB block size).

Datasets: We have adopted a trace-driven experimental
methodology in which real and synthetic datasets are fed into
our simulator. Specifically, we utilize real road network tra-
jectories in California, collected by Boston University’s Com-
puter Science department [12]. The second utilized trajectory
dataset is a synthetic one based on Oldenburg’s road network,
and was generated with Brinkhoff spatio-temporal generator
[13]. Additionally, we used two large GPS trajectory datasets,
named Geolife and T-drive, collected by Microsoft Research
Asia [14], [15]. The datasets of EV charging stations and
their production information based on weather forecast were
retrieved by PlugShare and “California Distributed Generation
Statistics” (CDGS) [16].

• Oldenburg [13]: The synthetic dataset generated by
Brinkhoff spatio-temporal tool, includes 4,000 vehicle
trajectories in a 45km x 35km area of Oldenburg, Ger-
many.

• California [12]: The real road network dataset consists
of 7,000 vehicle trajectories (e.g., edges and nodes) in a
1,220 km x 400 km area of California, U.S.

• T-drive [14]: It contains the GPS trajectories of 10,357
taxis during the period of February 2 to February 8, 2008
within Beijing, China. The total number of points is about
15 million and the distance of the trajectories reaches 9
million km.

• Geolife [15]: This dataset contains 17,621 trajectories
with a total distance of 1,292,951 km and a total duration
of 50,176 hours. These trajectories were recorded by
different GPS loggers and GPS phones, and have a variety
of sampling rates. 91.5% of the trajectories are logged in
a dense representation of every 1∼5 seconds or every
5∼10 meters per point.

• EV Chargers & Solar Production [16]: The utilized
dataset consists of more than 1,000 chargers along with
various information about their charging rates, times-
tamps, and solar generation in a 15-minute time-interval
from 2016 to 2018.

Metrics: The efficiency of the proposed technique to achieve
the research goal introduced earlier, is measured by the Sus-

tainable Charging Level (L), Availability (A), Derouting Cost
(D), and CPU Execution Time (Ft), as detailed described in
Section II. For consistency and simplicity the Sustainability
Score (SC) is computed in the first three experimental series
using equal weights, particularly w1 = w2 = w3 and w1 +
w2 + w3 = 1. The presented SC score is presented as a
percentage of the Brute Force solution (with it scoring the
optimal solution 100%). The mean and standard deviation of
the results are shown with error bars in the experiments, based
on approximately ten repetitions.

A concise overview of the compared baseline approaches
optimizing the objectives follows below:

• Brute-Force Method: performs an exhaustive search
over the entire pool of chargers to find the ones max-
imizing the SC.

• Index-Quadtree Method: uses a specialized tree data
structure used for partitioning a two-dimensional space
and improve the runtime performance of the Brute-Force
method from O(n) to O(logn), where n is the number
of chargers.

• Random Method: generates an Offering Table with
random EV chargers within the configured input radius R,
while completely ignoring the objectives of the weighted
sum function.

B. Performance Evaluation

In this experimental series, we evaluate the performance of
EcoCharge against all methods over all datasets introduced,
with respect to the average Sustainability Score (SC) and CPU
execution time (Ft) for all points in each dataset. SC is based
upon 33.3% of the Sustainable Charging Level weight, 33.3%
of the Availability weight, and 33.3% of the Derouting Cost
weight.

As demonstrated in Figure 6, the Brute Force method
achieved the best SC = 100% for all datasets, however, it has
the worst execution time of all; Ft ≈345 ms for Oldenburg,
≈348 ms for California, ≈351 ms for T-drive, and Ft ≈355 ms
for Geolife. This is because Brute Force exhaustively searches
space for an optimal solution. Considering the execution of the
Index-Quadtree method, it shows that can efficiently manage
sparse data across large areas, allowing for rapid searching and
data retrieval. Having a much faster execution time than Brute
Force against all datasets Ft≈78-85 ms, the Index-Quadtree
approach also provides great performance SC≈80-85%. The
Random approach selects randomly chargers by completely
ignoring SC, thus, it generates Offering Tables much faster
than Brute Force, but with the worst SC score achieved out of
all methods; SC≈40% at Ft≈10 ms for the smallest dataset,
and SC≈35% at Ft≈15 ms for largest one.

According to EcoCharge, after different combinations
tested regarding the user-configured radius R and range dis-
tance Q parameters (i.e., presented in the following experi-
ments), we decided that the best configurations to be adjusted
are R = 50 km and Q = 5 km. EcoCharge seems to be the
fastest in all datasets against all methods (i.e., Ft ≈56-67 ms).
This is due to the fact that our solution does not need to search
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Fig. 6. Performance Evaluation: Evaluation in terms of CPU Execution Time and Sustainability Score, based on Brute Force performance.

the entire pool of chargers for every new node location in case
R and Q parameters are satisfied. In contrast to other methods,
it intelligently inherits existing Offering Tables that match the
requirements. In addition, it managed to achieve reasonable
SC score for Oldenburg at ≈99%, ≈98.5% for California,
≈98% for T-drive, and ≈97.5% for Geolife, respectively.
Consequently, EV users can utilize our proposed technique for
considerably faster execution obtaining accurate results with
very high SC, almost as good as an exhaustive search method.
EcoCharge can proficiently balance the trade-off between
Derouting Cost, Availability, and Sustainable Charging Level.
It has the ability to support EV owners save time and money
while reducing their carbon footprint, making it a valuable
tool for both individuals and organizations looking to adopt
sustainable transportation practices.

C. R-opt Evaluation

In the second experiment, we evaluate the performance
of the proposed EcoCharge algorithm against different user
configured radius values (R), with respect to the average
Sustainability Score (SC) and CPU execution time (Ft) for
all points in each dataset. Figure 7 illustrates that when users
configure lower radius the execution is faster, however, SC
decreases gradually in comparison to higher radius values.

According to the smaller dataset of Oldenburg, the trade-off
can be clearly identified regarding the fastest execution having
R = 25 km, where Ft = 55 ms with the worst SC = 98.5%,
and the slowest execution having R = 75 km, where Ft= 61
ms with the best SC = 99.5%. Similarly for California, the
fastest execution occurs when R = 25 km, where Ft= 56 ms
with the worst SC = 98%, and the slowest execution occurs
when R = 75 km, where Ft= 67 ms with the best SC =
99%. The same stands for the two bigger datasets of T-drive
and Geolife, where the fastest execution is achieved when R
is configured to 25 km at Ft= 56 ms and 57 ms with the
worst score SC 97.5% and 97%, respectively. In a similar

manner to the previous cases, the slowest execution occurs
when R = 75 km, where Ft = 75 ms and 88 ms with the best
score SC = 98.5% and 98%, correspondingly. As expected,
the results retrieved for all datasets when R is configured to 50
km are somewhere in between the two aforementioned cases.
Consequently, increasing the radius setting means more EV
chargers are identified and processed based on user’s location
(i.e., larger search space), hence, more time is needed for the
generation of Offering Tables.

Consider for example a generated table of an EV owner
using R = 75 km and another EV user using R = 25 km.
In the first case (i.e., R = 75 km), since EV user does not
mind traveling farther for charging by setting higher radius,
they will get considerably more charger options in comparison
to the second driver (i.e., R = 25 km). Hence, it is at the
discretion of the user to dedicate more execution time for
retrieving an O with numerous charger choices, or to spend
less execution time utilizing only the available chargers within
a close neighborhood area.

D. Q-opt Evaluation

In the third experimental series, we evaluate the perfor-
mance of the proposed algorithm against various distance
range values (Q), with respect to the average Sustainability
Score (SC) and CPU execution time (Ft) for all points in
each dataset. Figure 8 shows that when the configured range
distance value is longer, then the execution time is slightly
faster, however, SC gradually drops in comparison to shorter
range distance values.

Regarding the smaller dataset of Oldenburg, the trade-off
can be identified based on the fastest execution when Q is
configured to 15 km, where Ft= 38 ms with the worst SC =
97%, in contrast when Q is set to 5 km, where the slowest
execution Ft= 56 ms with the best SC = 99%. Similarly
for California, the fastest execution having Q = 15 km is
Ft= 39 ms with the worst SC = 96.5%, and the slowest



 0

 20

 40

 60

 80

 100

 120

O
LD

EN
BU

R
G

C
ALIFO

R
N
IA

T-D
R
IVE

G
EO

LIFE

E
x
e
c
u
ti
o
n
 T

im
e
 F

T
 (

m
s
)

R-opt Evaluation for EcoCharge 
(R = 25-75 km; Q = 5 km)

EcoCharge (R:25km)
EcoCharge (R:50km)
EcoCharge (R:75km)

 90

 92

 94

 96

 98

 100

 102

 104

O
LD

EN
BU

R
G

C
ALIFO

R
N
IA

T-D
R
IVE

G
EO

LIFE

S
u
s
ta

in
a
b
ili

ty
 S

c
o
re

 (
%

)

R-opt Evaluation for EcoCharge 
(R = 25-75 km; Q = 5 km)

EcoCharge (R:25km)
EcoCharge (R:50km)
EcoCharge (R:75km)

Fig. 7. R-opt Evaluation of EcoCharge: Evaluation in terms of CPU Execution Time and Sustainability Score based on different configured radius values,
based on Brute Force performance.
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Fig. 8. Q-opt Evaluation of EcoCharge: Evaluation in terms of CPU Execution Time and Sustainability Score based on different range distance values,
based on Brute Force performance.

execution having Q = 5 km is Ft= 62 ms with the best SC
= 98.5%. The fastest execution of the two bigger datasets of
T-drive and Geolife, is achieved when Q = 15 km, where Ft=
41 ms and 42 ms with the worst score SC 96% and 95%,
respectively. Correspondingly, the slowest execution occurs
when Q = 5 km, where Ft = 65 ms and 67 ms with the
best score SC = 98% and 97.5%. The results obtained for
all datasets when Q is configured to 10 km are somewhere
in between the two aforementioned cases, as expected. As
we increase EcoCharge’s range distance parameter Q, we
observe minor decrease in both, the execution time and the
Sustainability Score. This is due to the fact that the farther
previous EV location is from current, the less accurate the
previous generated results are, since chargers’ production data
might change and a recalculation of SC is required.

Consider for example a case where Q is set to 15 km and an
Offering Table is already generated for the EV driver’s current
location. Therefore, if next node’s location range distance is
within 15 km, no new Offering Table will be generated. That
means in case next location is at ≈ 13 km a recalculation of O
is skipped, thus, it is possible that some chargers’ production
data might change and previously generated results won’t be
applicable according to the new location. Consequently, it is
recommended to use shorter range distances Q, even if that
means devoting some extra Ft for higher SC.

E. Ablation study
The fourth experimental series is an ablation study of

weight parameters on Sustainability Score (SC). Particularly,
we evaluate the performance of EcoCharge against different
distance functions:
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Fig. 9. Ablation Study of Weight Parameters and their impact on Sustainability Score: Evaluation in terms of EcoCharge performance according to
different weight values, based on Brute Force performance.

• AWE: considers all weights equally (i.e., w1=w2=w3).
This is the default configuration of EcoCharge.

• OSC: considers only Sustainable Charging Level (w1)
• OA: considers only Availability (w2)
• ODC: considers only Derouting Cost (w3)
Figure 9 demonstrates different distance functions in terms

of SC for all datasets. We can clearly see that AWE out-
performs all functions, while it achieves , w1 ≈ 31.5-35%,
w2 ≈ 32-40%, w3 ≈ 26.5-31% , and SC score ranging at ≈
97.5-99%. The following distance functions are compared with
AWE since it has the best output. According to OSC, where
the emphasis is given only on Sustainable Charging Level, we
observe an increase on w1 ≈ 2-3%, with a reduction on w2 ≈
9-12% and w3 ≈ 5-6%. As OA targets only Availability, there
is a notable increase on w2 ≈ 6-9%, and a drastic decrease on
w1 ≈ 13-15% and w3 ≈ 16-22%, resulting in a much lower
SC ≈ 64-75%. ODC focuses on EV rankings only based on
Derouting, where we notice an increase on w3 ≈ 2-4%, and
a decrease on the other two weights; w1 ≈ 5-7%, and w2 ≈
10-13%, respectively. This causes the total SC score to also
decrease by about ≈ 15-18%.

The findings reveal a distinct interplay between these param-
eters, showing for example that focusing only on Derouting
could affect Charging Level or disregarding Availability could
also have an impact on Derouting. The system’s performance
appears to be highly sensitive to the weight configurations,
suggesting that fine-tuning these weights could be crucial for
optimizing EcoCharge’s operation. Our experiments revealed
that the balance between w1, w2, and w3 is key to the system’s
overall efficiency.

VI. RELATED WORK

In this section, we provide pointers to the interested reader
by presenting various green mobility approaches in road
networks covering topics related to EV charging, kNN query
processing and sustainable systems.

A. EV Charging

Research on EV charging has grown significantly in re-
cent years, given the rise of electric vehicles’ popularity.
Several studies have been conducted on EV charging in-
frastructure deployment, charging station location planning,

and optimization algorithms for EV charging [4], [17]. Ad-
ditionally, some studies have focused on user behavior and
preferences regarding EV charging, and the development of
smart charging systems to enable demand-side management
and energy balancing [2]. The research approach in [2],
presents a framework for strategically deploying charging
stations in a city by utilizing a polynomial time approximation
algorithm. It consists of two optimization components, the
optimal charging station placement that minimizes the average
time to travel to the nearest charging station, and the optimal
charging point assignment that minimizes the average waiting
time for an available charging point. In [4], an EV charging
station placement method is proposed, called SocialAware
Optimal Electric Vehicle Charger Deployment (SOCD), which
considers multiple complex social influences of EV chargers
arrangement. The authors utilized two algorithms to tackle
the matter, while considering both urban and rural areas, but
without any sustainability provisions. Furthermore, in [18],
the authors applied a phase abstraction approach with Markov
chains to accurately estimate energy consumption in EV trips
using kernel density, and developed a trip planner tool that
can efficiently model the EV energy consumed in future trips
along a route. An EV path-planning system is introduced in
[19], where the waiting time at charging stations is considered,
but no sustainability aspects are considered.

B. kNN for Spatio-Temporal Data

In applications involving spatio-temporal data, datasets
comprise objects and queries that traverse through time within
an Euclidean space. Current works in this domain only address
the challenge of responding to a k-nearest neighbor query for
a single user throughout the temporal dimension (referred to
as a CkNN query). Formally, the kNN of an object o from
some dataset O, denoted as kNN(o,O), are the k objects that
have the most similar attributes to o. Specifically, given objects
oa ̸=ob ̸=oc, ∀ob ∈ kNN(oa, O) and ∀oc ∈ O−kNN(oa, O) it
always holds that dist(oa, ob)≤dist(oa, oc)9.

In the context of large-scale disk-resident datasets, Frentzos
et al. [20], Benetis et al. [21], Tao et al. [8], Iwerks et al.
[22], and Raptopoulou et al. [23], posit the assumption that

9In our discussion, dist can be any Lp-norm distance metric, such as
Manhattan (L1), Euclidean (L2) or Chebyshev (L∞).



the velocity of the moving objects remains constant, allowing
for the estimation of an object’s future position. Huan et al.
[24] assume the existence of an uncertainty degree in the
velocity and direction attributes of moving objects. In response
to this premise, they introduce algorithms designed to optimize
scenarios where uncertainty extends to the estimation of future
positions. This research employs time-parameterized R-trees to
conduct efficient searches for the nearest neighbors. Kollios
et al. [25] introduce an approach for addressing nearest-
neighbor (NN) queries concerning moving objects within
a one-dimensional spatial context. The foundation of their
method lies in a dual transformation, where a native space
line segment corresponds to a point in the transformed space,
and vice-versa. Xiong et al. [26] focus on addressing multiple
k-NN queries and propose an incremental search approach that
relies on hashing objects into a regular grid, with a specific
emphasis on optimizing CPU time. Regarding the disk-resident
data, the primary aim is to reduce disk input/output (I/O)
operations and prioritize CPU time as a secondary objective.

Main-memory processing is typically imperative for spatio-
temporal applications, particularly when dealing with highly
mobile objects. The frequency of location updates poses
significant constraints for disk-based storage and indexing,
necessitating CPU-time optimization. The optimization of
kNN queries, similar to the approach employed by Xiong
et al. in the context of disk-resident data, is also addressed
by Mouratidis et al. [27], Hu et al. [28], and Yu et al.
[29]. Data objects are indexed by a grid in main-memory
given a grid size system-defined parameter. All approaches
employ an iterative process of expanding a range search to
identify the kNN for each query. Assuming a grid size of√
n cells, their stateless solution has a time complexity of

O(n1.5) for uniform distributions and O(n2.5) for the worst-
case distribution, where the search for most of the users needs
to be deepened iteratively until it covers most of the space.

Formally, an All kNN (AkNN) query generates a kNN
graph. It computes the kNN(o,O) result for every o ∈ O
and has a quadratic worst-case bound. An AkNN query can
alternatively be viewed as a kNN Self-Join: Given a dataset
O and an integer k, the kNN Self-Join of O combines each
object oa ∈ O with its k nearest neighbors from O, i.e.,
O▷◁kNNO = {(oa, ob)|oa, ob ∈ O and ob ∈ kNN(oa, O)}.
In [7], we devise a high-performance distributed main-memory
algorithm named Spitfire, which carries out the AkNN compu-
tation in the cloud. Such an operator could be useful shall we
decide to implement EcoCharge in Mode 2 (i.e., cloud mode).

C. Sustainable Home Energy Management Systems

In our previous publications, we have presented Energy
Planner (EP) and Green Planner (GP), integrated in a system
called IMCF+ [30], [31]. Both, EP and GP , adapted off-
the-shelf AI algorithms (hill climbing and simulated anneal-
ing), and focus on “long-term” planning, meaning that they
would compute a whole year plan by doing less complex daily
computations. For example, IMCF+ generates a residential
plan while considering the family’s configured annual energy

budget (e.g., 11500 kWh) and Rule Automation Workflow
(RAW) pipelines. The high-level system’s objective is to
identify the rules that must be dropped so that users stay within
the desired annual energy budget. Furthermore, we developed a
system called GreenCap [32], which refers to “daily” planning
as it attempts to find the best combination for allocating and
shifting appliances during a day by minimizing the imported
energy from the grid, while considering peak demand and high
energy production times.

VII. CONCLUSION

In this paper, we present EcoCharge, an innovative frame-
work for sustainable EV charging by leveraging renewable
energy sources, optimizing charging strategies, and reducing
operational costs. The CkNN-EC query approach and the dy-
namic caching method applied, allow for efficient computation
and optimization of the renewable hoarding process, resulting
in significant speedups and minimizing CPU execution time,
proving also accurate results very close to an exhaustive search
method.

The ability to accumulate renewable energy during pro-
duction periods and take advantage of self-consumption is a
key feature, making EcoCharge an environmentally-friendly
alternative to traditional charging methods. Providing accurate
Offering Tables in a reasonable response time by taking into
consideration Estimated Components (ECs) (e.g., sustainable
charging level, availability, derouting costs) the proposed
algorithm allows drivers to make informed decisions and
choose the most sustainable charging stations along their
scheduled route, while reducing the environmental impact of
transportation.

In the future, we plan to extend our solution by inte-
grating EcoCharge with smart grid technologies and taking
advantage of off-peak electricity rates and grid stabilization
services. Additionally, we plan to investigate the balance of the
produced traffic to chargers by the suggested Offering Tables,
and monitor the congestion to redirect drivers to alternative
EV charging stations.
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M. H. Böhlen, C. S. Jensen, and M. O. Scholl, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 119–134.

[26] X. Xiong, M. Mokbel, and W. Aref, “Sea-cnn: scalable processing of
continuous k-nearest neighbor queries in spatio-temporal databases,” in
21st International Conference on Data Engineering (ICDE’05), 2005,
pp. 643–654.

[27] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual
partitioning: An efficient method for continuous nearest neighbor mon-
itoring,” in SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
international conference on management of data, 2005, pp. 634–645.

[28] H. Hu, J. Xu, and D. L. Lee, “A generic framework for monitoring
continuous spatial queries over moving objects,” in Proceedings of
the 2005 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 479–490. [Online]. Available:
https://doi.org/10.1145/1066157.1066212

[29] X. Yu, K. Pu, and N. Koudas, “Monitoring k-nearest neighbor queries
over moving objects,” in 21st International Conference on Data Engi-
neering (ICDE’05), 2005, pp. 631–642.

[30] S. Constantinou, A. Konstantinidis, P. K. Chrysanthis, and
D. Zeinalipour-Yazti, “Green planning of iot home automation
workflows in smart buildings,” ACM Trans. Internet Things, jun 2022.

[31] S. Constantinou, A. Konstantinidis, D. Zeinalipour-Yazti, and P. K.
Chrysanthis, “The iot meta-control firewall,” in 37th IEEE ICDE, April
19 - April 22, 2021, Chania, Crete, 2021, conference, p. 12 pages.

[32] S. Constantinou, N. Polycarpou, C. Costa, A. Konstantinidis, P. K.
Chrysanthis, and D. Zeinalipour-Yazti, “An iot data system for solar self-
consumption,” in 24th IEEE International Conference on Mobile Data
Management (MDM), July 3- July 6, 2023, Singapore, 2023, conference,
p. 10 pages.


